TECHNO ANALYSIS STUDY OF SILICA FACTORY FROM GEOTHERMAL BRINE

Eduardus Budi Nursanto ${ }^{1,2}{ }^{\text {* }}$, Nadya Aulia Warsito ${ }^{1)}$, Muhammad Sultan Ryan Ramdhani ${ }^{1}$ dan Nabila Shabrina Aldyra ${ }^{1)}$
${ }^{1}$ Chemical Engineering Department, Universitas Pertamina, Jakarta, Indonesia
${ }^{2}$ Center of Downstream Chemical Industry, Universitas Pertamina, Jakarta, Indonesia
*) Corresponding author: eduardus.bn@universitaspertamina.ac.id

Abstract

In Geothermal power plant, brine from geothermal steam is reinjected again into the geothermal field. Brine is contains several valuable metal such as silica and lithium. Silica is important material for development of renewable energy since it is main component for fabrication of silicon solar cell. In this research, we investigated the feasibility study of silica extraction factory from geothermal brine with production capacity of 5000 ton/year. The techno-economy analysis is applied for feasibility study. Silica is obtained from polycondensation and nucleation process of dissolved silica in brine with operating condition of 1 atm and temperature of $30^{\circ} \mathrm{C}$, Then it will be separated using 3-stage membrane ultrafiltration to get $871.9875 \mathrm{~kg} / \mathrm{h}$ of silica nanoparticles with 99.8% purity. The amount of separated geothermal water needed are $1,350,000 \mathrm{~kg} / \mathrm{hr}$. From the economy analysis: pay out time is 2.14 years, return of investment is 46.77%, break even point is 17.3966%, and shutdown point is 6.86%. Based on techno-economny analysis, the silica extraction plant from geothermal brine is feasible to develop.

Abstract

Abstrak Di Pembangkit Listrik Geotermal, brine dari uap geothermal biasanya direinjeksi lagi ke dalam lapangan geotermal. Brine mengandung beberapa logam yang bernilai tinggi seperti silika dan litium. Silika merupakan material penting dalam pengembangan energi terbarukan karena silika merupakan komponen utama dalam pengembangan sel surya silicon. Di dalam penelitian ini, kami melakukan investigasi kelayakan pembangunan untuk pabrik ekstraksi silika dari brine geotermal dengan kapasitas 5000 ton/tahun. Analisis tekno-ekonoi diaplikasikan di dalam studi kelayakan pembangunan, Silika diperoleh dari proses polikondensasi dan nukleasi dissolved silica dalam brine dengan kondisi operasi 1 atm dan suhu $30^{\circ} \mathrm{C}$ kemudian akan dipisahkan dengan membrane ultrafiltrasi 3 -stage untuk mendapatkan silika nanopartikel dengan kemurnian 99.8% sebanyak $871,9875 \mathrm{~kg} / \mathrm{jam}$. Jumlah separated geothermal water (SGW) yang diperlukan di dalam proses produksi silika adalah sebesar $1.350 .000 \mathrm{~kg} / \mathrm{jam}$. Dari analisis ekonomi, prospek ekonomi untuk pabrik ini setelah pajak berupa pay out time selama 2,14 tahun, return of investment sebesar $46,77 \%$, breakeven point sebesar $17,40 \%$, dan shutdown point sebesar $6,86 \%$.

Kata Kunci : geothermal brine, silica extraction factory, techno analysis study

PENDAHULUAN

Indonesia is rich in geothermal source since there are many active volcanoes in Indonesia. Geothermal sources in Indonesia are utilized for power plant. Geothermal steam from geothermal field contains several minerals that dispersed and dissolved. Brine geothermal is the side stream from the power generation process in geothermal power plant. The geothermal steam treated first in separator to separate between geothermal brine that rich in mineral and clean steam for rotating turbine. Recently, geothermal brine just injected again into geothermal field ${ }^{[1-5]}$.

Geothermal brine can be extracted to obtain the minerals. The minerals that contain in geothermal brine such as Ammonia (NH_{3}), Mercury (Hg), Kalium (K), Calcium (Ca), Magnesium (Mg), Platinum (Pt), Seng (Zn), Timbal (Pb), Copper (Cu), Mangan (Mn), Silica (SiO2), Lithium (Li), Arsen (As), Antimony (Sb), Boron (B), Bromida(Br), Iodine (I), Strontium (Sr), Sulfate (SO4), Chlor (C), Aluminium (Al), Iron (Fe), Natrium (Na), Carbon Dioxide (CO2), Fluorine (F) and Bikarbonat Acid (HCO3) ${ }^{[3,5]}$. One of the main components in geothermal stream is silica. Silica is one of the valuable minerals. However, silica in the stream increase the possibility for scaling in geothermal power plant system.

In this study, we did the techno-economy analysis study for silica factory from geothermal brine. In Indonesia, brine geothermal contains high silica concentration around $830 \mathrm{mg} \mathrm{SiO} 2 / \mathrm{kg}$ geothermal brine ${ }^{[3]}$. Furthermore, the increasing demand in Indonesia for silica in Indonesia which is 78,153 ton/year (Badan Pusat Statistik, 2018) drive the establishing of silica plant in Indonesia. Silica extraction factory from geothermal brine with production capacity 5000 ton/year planned to establish at region Alam Pauh Duo, Kabupaten Solok, Sumatera Barat. This location is chosen since it close to geothermal power plant muara laboh (PLTP Muara Laboh), since it producing high amount of geothermal brine.

METODE PENELITIAN

The unit cost for the apparatus is based on the dimension of the apparatus. All of the apparatus has been well designed. The cost estimation for apparatus is based on the reference from Aries et.al ${ }^{[8]}$. The cost estimation is based on the capacity of factory which is 5000 ton/day and the present price is corrected by using correction factor which is chemical engineering plant index.

For the economic feasibility, we are following reference from Aries et.al and Timmerhaus et.al ${ }^{[8-9]}$. The feasibility of this process is measured from capital expenditures (CAPEX) and operational expenditures (OPEX). CAPEX consists of total direct cost (factory apparatus cost, instrumentation, etc), total indirect cost (engineering, construction fee, etc) and working capital (product inventory, process inventory, etc). OPEX consist of manufacturing cost and general expenses. APEX and OPEX measurement is used for calculating important parameter for economic feasibility such as return on investment (ROI), payout time (POT) and break even point (BEP).

HASIL DAN PEMBAHASAN

Gambar 1. Block Flow Diagram of Silica Plant for Geothermal Brine
The technology for extracting silica is following research by Potapov ${ }^{[8-10]}$. From Figure 1, Separated Geothermal Water (SGW) or brine is cooled down by using heat exchanger (HE). The purpose of cooling down is to conditioning brine at saturated condition $\left(30^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$. At saturated condition, brine is undergoing nucleation and polycondensation of silicic acid or ortho-silicic acid (OSA). After nucleation and polycondensation, colloid silica is formed. Several factor that affects nucleation rate and SiO_{2} particle growth are such as temperature, pH , and degree of saturation. Then the solution flows to filtration unit to obtain colloid silica concentrate.

To obtain silica powder, colloid silica is dried to remove the water content by using dryer. Then, silica powder is calcinated using rotary kiln at high temperature to obtain crystalline structure. After from rotary kiln, sample is cooled by using rotary cooler. The final product from rotary cooler is silica (SiO 2) crystalline nano-powder.

Table 1 shows capital expenditures (CAPEX) of silica factory. Total CAPEX of this factory is $\operatorname{Rp} 1,210,727,176,193.19$. Table 2 shows manufacturing cost for this factory and Table 3 shows general expenses of this factory. Operational expenditures (OPEX) is the total value of manufacturing cost and general expense. OPEX value for this factory is Rp 408,995,719,188.59.

Table 1. Capital Expenditures for Silica Factory

Component		Price	
1	Purchased Equipment Cost	Rp	$195,469,439,427$
2	Delivery Equipment Cost	Rp	$29,320,415,914$
3	Equipment Installation	Rp	$304,698,948,649$
4	Piping	Rp	$68,414,303,799$
5	Instrumentation and Controls	Rp	$20,313,263,243$
7	Electrical Equipment	Rp	$20,313,263,243$
8	Building Including Services	Rp	$29,975,550,512$
9	Services Facilities	Rp	$107,508,191,685$
10	Land and Yard Improvement	Rp	$77,143,679,746$
Direct Plant Cost (DPC)	Rp	853.157 .056 .218	
12	Engineering, Construction, and Supervision	Rp	$81,253,052,973$
13	Contractor's Fee	Rp	$20,313,263,243$
14	Contingency	Rp	$50,783,158,108$
15	Legal Expenses	Rp	$10,156,631,622$
INDIRECT PLANT COST (IDC)	Rp	$162,506,105,946$	
Fixed Capital Invesment (FCI)	Rp	$1,015,663,162,165$	
16		Raw materials inventory	Rp
17	Process inventory	Rp	27.145 .690 .727 .97
18	Product inventory	Rp	50.783 .441 .217 .10
19	Extended credit	Rp	97.002 .823 .108 .23
Working Capital Cost		Rp	$195,064,114,028.50$
CAPITAL EXPENDITURE COST	Rp	$1,210,727,176,193.19$	

From the production capacity of this factory (5000 ton/year), total annual sales is calculated. Based on alibaba (2023), price of silica is around Rp 232,806.78/kg (~ USD 15.6). Therefore the total annual sales

Total annual sales $=$ production capacity x silica price

$$
=5000,000 \mathrm{~kg} / \text { year x 232,806.775 }
$$

The total annual sales (Sa) is Rp 1,164,033,887,702.40 /year
From OPEX value in Table 3, we calculated profit before tax.
Profit before tax = Total annual sales - OPEX

$$
\begin{aligned}
& =\operatorname{Rp} 1.164 .033 .887 .702,40-\operatorname{Rp} 408,995,719,188.59 \\
& =\operatorname{Rp} 755,038,168,513.81
\end{aligned}
$$

According to Indonesia goverment regulation (UU nomor 36 pasal 17 ayat 1(b), 2018), the industrial tax is 28%. Then the profit after tax is
Profit after tax $=$ Profit before tax - (tax*profit before tax)
Profit after tax $=$ Rp 543.627.481.329.94

Table 2. Manufacturing Cost for Silica Factory

A. VARIABLE PRODUCTION COST

Components	Price	
1 Raw materials	Rp	27,145,690,727.97
2 Labor	Rp	18,057,600,000.00
3 Maintenance	Rp	71,096,421,351.53
4 Operating Supplies	Rp	10,664,463,202.73
5 Utility	Rp	4,825,888,955.41
6 Laboratorium	Rp	1,805,760,000.00
$7 \quad$ Patent and Royalty	Rp	4,089,957,191.89
B. FIXED CHARGES		
Insurance	Rp	10,156,631,621.65
2 Property Tax	Rp	112,672,144.30
3 Bank Interest	Rp	48,126,409,228.68
4 Depreciation	Rp	92,171,327,786.04
C. PLANT OVERHEAD COST	Rp	332,829,832,885.96
GENERAL EXPENSES		
1 Administration	Rp	27,086,400,000.00
2 Marketing Distribution	Rp	40,899,571,918.86
3 Research and Development	Rp	8,179,914,383.77
OPERATIONAL EXPENDITURE COST	Rp	408,995,719,188.59

By using the data from Table 1 and Table 2, we calculated the discounted value (i) to prove the benefit for establishing this factory. We calculated discounted value by using equations below:

$$
\begin{equation*}
W C+S V+\left(C x \frac{(1+i)^{N}-1}{i}\right)=(F C+W C)+(1+i)^{N} \tag{1}
\end{equation*}
$$

Notes:
WC : working capital $=$ Rp 195,064,114,028.50
SV : salvage value which consists of building and land price $=\operatorname{Rp} 107,119,230,258$
C : cash flow which consists of profit after tax, depreciation and loan interest $=$ Rp 683,925,218,344.66
FC : fixed capital cost $=$ Rp 1,015,663,162,165
i : discounted value
$\mathrm{N} \quad$: operational life of factory $=9$ year
By using trial and error method, we got discounted cash value(i) $=20.77 \%$. The value of discounted cash (i) is higher than average saving deposito interest rate in Indonesia (3\%). The higher discounted cash value prove that inverstation for silica factory in Indonesia is profitable. Another key value to calculate the feasibility of factory are return on investment (ROI) and pay out time (POT). We calculated the value of ROI and POT after tax below, based on equation from reference (peter timmerhaus):

$$
\begin{align*}
\text { Return on Investment (ROI) after tax } & =\frac{\text { profit after tax }}{\text { total capital investment }} \times 100 \% \tag{2}\\
= & 46.77 \%
\end{align*}
$$

Pay Out Time (POT) after tax

$$
\begin{equation*}
=\frac{\text { total capital investment }}{\text { profit after tax }+(0.1 \times \text { total capital investment })} \tag{3}
\end{equation*}
$$

$$
=2.14 \text { year }
$$

The value for ROI (46.77%) is higher than highest inflation rate in Indonesia at 2022 which is $6.95 \%{ }^{[11]}$. proving the investment for silica factory from geothermal brine is acceptable. Based on reference, low risk investment that has low risk of failure should be less than 5 year ${ }^{[7]}$. The POT for silica factory from geothermal brine is lower than 5 year, proving the economic feasibility of this factory.

Break even point (BEP) and shut down point (SDP) are another parameters for proving the feasibility of investment. BEP and SDP were calculated based on equation from reference ${ }^{[7]}$.

The BEP value of 17.40% related with the production capacity in the factory that the operational cost is similar with the profit. The SDP value of 6.86% related with the limit for the factory to shutdown the operation. If the capacity production of factory less than 6.86% then the production should be stopped, since the operational cost is higher than the profit.

KESIMPULAN

From our study, the silica factory from geothermal brine is economicallu feasible to be established in Indonesia. The discounted cash value (20.77%) is higher than saving deposito interest in Indonesia (3\%), proving the investment silica factory is more profitable than saving. The break even point (BEP) for this silica factory is 17.40%. The production capacity limit before the factory shutdown is represent by shut down point (SDP), the value of SDP is 6.86%. Furthermore, the value for return on investment (ROI) is higher (46.77\%) than highest inflation rate in Indonesia at 2022 (6.95%), proving the investment for silica factory from geothermal brine is promising.

UCAPAN TERIMAKASIH

Authors is fully supported from Chemical Engineering Department, Universitas Pertamina

DAFTAR PUSTAKA

[1] Geothermal brine, Encyclopedia.com. (n.d.). Retrieve September 29, 2021, fromhttps://www.encyclopedia.com/science/dictionaries-thesauruses-pictures-and-press- releases/geothermal-brine
[2] Geothermal Brine: Indonesia's Natural Resource Potential for Alternative Lithium -UnconventionalGeo-resources Research Group. (n.d.). Retrieved September 28, 2021, from https://ugrg.ft.ugm.ac.id/articles/geothermal-brine-indonesias-natural-resources-that-has-the-potential-to-be-an-alternative-source-of-lithium/
[3] Nugroho Agung Pambudi, Ryuichi Itoi, Rie Yamashiro, Boy Yoseph CSS Syah Alam, Loren Tusara, Saeid Jalilinasrabady, Jaelani Khasani (2015). The behavior of silica in geothermal brine from Dieng geothermal power plant, Indonesia, Geothermics, 54, 109114
[4] Pambudi NA (2018). Geothermal power generation in Indonesia, a country within the ring of fire: current status, future development and policy. Renew Sust Energy Rev.81.2893901.
[5] Kato, K., Ueda, A., Mogi, K., Nakazawa, H., \& Shimizu, K. (2003). Silica recovery from Sumikawa and Ohnuma geothermal brines (Japan) by addition of CaO and cationic precipitants in a newly developed seed circulation device. Geothermics, 32, 239-273.
https://doi.org/10.1016/S0375-6505(03)00019-1
[6] Aries, R. S., \& Newton, R. D. (1955). Chemical Engineering Cost Estimation. New York: McGraw-Hill Book Company.
[7] M. S. Peters, K. D. Timmerhaus, and R. E. West, Factory design and economics for chemical engineers, vol. 4. McGraw-Hill New York, 2003.
[8] Potapov, V., Cerdan, A., Gorbach, A., Litmanovich, E., Terpugov, G., dan Mynin V. 2006. Colloidal Silica Recovery from a HydrothermalHydrothermal Heat-Transfer Medium by Membrane Filters. Khimicheskaya Tekhnologiya, No. 5, pp. 2-8
[9] Potapov, V., Fediuk, R., \& Denis, G. (2020). Membrane concentration of hydrothermal SiO2 nanoparticles. Separation and Purification Technology, 251, 117290. https://doi.org/10.1016/j.seppur.2020.117290
[10] Potapov, V. Serdan, A., Kashpura, V., dan Gorbach, V. 2007. Polycondensation Kinetics of Orthosilicic Acid in a Hydrothermal Solution. Zhurnal Fizicheskoi Khimii, Vol. 81, No. 10, pp. 1897-1901
[11] Kusumatrisna, A., Sugema, I., \& Pasaribu, S. (2022). Threshold Effect in The Relationship Between Inflation Rate and Economic Growth in Indonesia.. Buletin Ekonomi Moneter Dan Perbankan, 25(1), 117-126.

