Subtitusi ZSM5 Sintetik dengan ZSM5-FA pada Material Cu/Mg/Zr/ZSM5 (CMZrZ): Studi Kristalinitas, Specific Surface Area, Morfologi, dan Keasaman

Authors

  • Rizky Ibnufaatih Arvianto Jurusan Teknik Kimia, Fakultas Teknik, Universitas Sebelas Maret
  • Anatta Wahyu Budiman Jurusan Teknik Kimia, Fakultas Teknik, Universitas Sebelah Maret
  • Khoirina Dwi Nugrahaningtyas Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sebelah Maret

DOI:

https://doi.org/10.31479/jtek.v10i1.168

Keywords:

Fly ash, ZSM5, ZSM5-FA.

Abstract

Pemanfaatan ZSM5 sintetik dalam skala besar sering bermasalah karena harganya mahal. Oleh karena itu, pada penelitian ini akan dipelajari pengaruh subtitusi ZSM5 menjadi ZSM5-FA pada material CMZrZ terhadap kristalinitas, specific surface area, morfologi, dan keasaman. Fly ash dimurnikan dengan HCl kemudian diubah menjadi ZSM5-FA dengan metode hidrotermal. Karakterisasi XRD, XRF dan SAA dilakukan untuk mengetahui efek pemurnian dan sintesis ZSM5-FA. Pemuatan Cu, Mg, dan Zr pada ZSM5 maupun ZSM5-FA dilakukan dengan deposisi-presipitasi untuk menghasilkan material CMZrZ dan CMZrZ-FA. Kedua material tersebut dikarakterisasi dengan XRD, XRF, SAA, SEM-EDS, dan NH3-TPD untuk mempelajari efek penambahan logam dan subtitusi ZSM5. ZSM5-FA berhasil disintesis berdasarkan kemiripan spektra XRD ZSM5-FA dengan ZSM5, kecocokan spektra XRD ZSM5-FA dengan ICDD 00-037-0361 (standar ZSM5) dan perubahan bentuk kurva isoterm adsorpsi-desorpsi. Logam Cu, Mg, Zr berhasil ditambahkan pada ZSM5 maupun ZSM5-FA dengan fasa utama berupa logam oksida (CuO, MgO, dan ZrO2). Penambahan logam tidak mempengaruhi kristalinitas, morfologi, porositas tetapi menyebabkan penurunan luas permukaan spesifik, keasaman total dan situs asam kuat, serta peningkatan situs asam lemah. Subtitusi ZSM5 tidak mempengaruhi kristalinitas, morfologi, porositas, keasaman tetapi menyebabkan kenaikan luas permukaan spesifik.

References

Badan Pengkajian dan Penerapan Teknologi, Indonesia Energy Outlook 2020 - Special Edition Dampak Pandemi COVID-19 terhadap Sektor Energi di Indonesia Diterbitkan. Jakarta: BPPT, 2020.

M. Ahmaruzzaman, “A review on the utilization of fly ash,” Prog. Energy Combust. Sci., vol. 36, no. 3, pp. 327–363, 2010, doi: 10.1016/j.pecs.2009.11.003.

S. M. Hossini Asl, M. Masomi, and M. Tajbakhsh, “Hybrid adaptive neuro-fuzzy inference systems for forecasting benzene, toluene & m-xylene removal from aqueous solutions by HZSM-5 nano-zeolite synthesized from coal fly ash,” J. Clean. Prod., vol. 258, p. 120688, 2020, doi: 10.1016/j.jclepro.2020.120688.

R. N. M. Missengue, P. Losch, N. M. Musyoka, B. Louis, P. Pale, and L. F. Petrik, “Conversion of South African coal fly ash into high-purity ZSM-5 zeolite without additional source of silica or alumina and its application as a methanol-to-olefins catalyst,” Catalysts, vol. 8, no. 4, 2018, doi: 10.3390/catal8040124.

R. N. M. Missengue et al., “Transformation of South African coal fly ash into ZSM-5 zeolite and its application as an MTO catalyst,” C. R. Chim., vol. 20, no. 1, pp. 78–86, 2017, doi: 10.1016/j.crci.2016.04.012.

K. Soongprasit, V. Sricharoenchaikul, and D. Atong, “Pyrolysis of Millettia (Pongamia) pinnata waste for bio-oil production using a fly ash derived ZSM-5 catalyst,” J. Anal. Appl. Pyrolysis, vol. 139, pp. 239–249, 2019, doi: 10.1016/j.jaap.2019.02.012.

Q. Jiang, Y. Liu, T. Dintzer, J. Luo, K. Parkhomenko, and A. C. Roger, “Tuning the highly dispersed metallic Cu species via manipulating Brønsted acid sites of mesoporous aluminosilicate support for CO2 hydrogenation reactions,” App. Cat. B: Env., vol. 269, no. February, p. 118804, 2020, doi: 10.1016/j.apcatb.2020.118804.

F. M. Yanti et al., “Methanol production from biomass syngas using Cu/ZnO/Al2O3 catalyst,” in AIP Conf. Proc., Apr. 2020, vol. 2223, pp. 1–6. doi: 10.1063/5.0000870.

S. Ren et al., “Enhanced catalytic performance of Zr modified CuO/ZnO/Al2O3 catalyst for methanol and DME synthesis via CO2 hydrogenation,” J. CO2 Util., vol. 36, pp. 82–95, 2020, doi: 10.1016/j.jcou.2019.11.013.

N. Mota, E. M. Ordoñez, B. Pawelec, J. L. G. Fierro, and R. M. Navarro, “Direct synthesis of dimethyl ether from co2: Recent advances in bifunctional/hybrid catalytic systems,” Catalysts, vol. 11, no. 4. MDPI, Apr. 01, 2021. doi: 10.3390/catal11040411.

P. José, R.-M. José, and C. Tomás, “Methanol Dehydration to Dimethyl Ether on Zr-Loaded P-Containing Mesoporous Activated Carbon Catalysts,” Materials, vol. 12, pp. 2–17, 2019.

W. Widayat and A. N. Annisa, “Synthesis and Characterization of ZSM-5 Catalyst at Different Temperatures,” in IOP Conf. Ser.: Mater. Sci. Eng., Jul. 2017, vol. 214, no. 1, pp. 1–7. doi: 10.1088/1757-899X/214/1/012032.

A. Kristiani, S. Sudiyarmanto, F. Aulia, L. Nurul Hidayati, and H. Abimanyu, “Metal supported on natural zeolite as catalysts for conversion of ethanol to gasoline,” MATEC Web Conf., vol. 101, pp. 1–5, 2017, doi: 10.1051/matecconf/201710101001.

I. U. Din, M. A. Alotaibi, and A. I. Alharthi, “Green synthesis of methanol over zeolite based Cu nano-catalysts, effect of Mg promoter,” Sustain. Chem. Pharm., vol. 16, p. 100264, 2020, doi: 10.1016/j.scp.2020.100264.

L. Frusteri et al., “Promoting Direct CO2 Conversion to DME over Zeolite-based Hybrid Catalysts,” Pet. Chem., vol. 60, no. 4, pp. 508–515, 2020, doi: 10.1134/S0965544120040076.

F. Frusteri, M. Cordaro, C. Cannilla, and G. Bonura, “Multifunctionality of Cu-ZnO-ZrO2/H-ZSM5 catalysts for the one-step CO2-to-DME hydrogenation reaction,” App. Catal. B: Env., vol. 162, pp. 57–65, 2015, doi: 10.1016/j.apcatb.2014.06.035.

Y. Liu and H. Lu, “Synthesis of ZSM-5 zeolite from fly ash and its adsorption of phenol, quinoline and indole in aqueous solution,” Mater. Res. Express, vol. 7, no. 5, pp. 1–5, 2020, doi: 10.1088/2053-1591/ab8fec.

O. K. Wattimena, Antoni, and D. Hardjito, “A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer,” in AIP Conf. Proc ., Sep. 2017, vol. 1887. doi: 10.1063/1.5003524.

H. Song, H. Fan, H. T. Gao, J. A. Liu, and H. Mou, “Improving fly ash brightness with carbon and iron oxide removal,” Recycling, vol. 5, no. 1, 2020, doi: 10.3390/recycling5010005.

Y. Xu et al., “Effect of iron loading on acidity and performance of Fe/HZSM-5 catalyst for direct synthesis of aromatics from syngas,” Fuel, vol. 228, pp. 1–9, 2018, doi: 10.1016/j.fuel.2018.04.151.

O. Tursunov, L. Kustov, and Z. Tilyabaev, “Catalytic activity of H-ZSM-5 and Cu-HZSM-5 zeolites of medium SiO2/Al2O3 ratio in conversion of n-hexane to aromatics,” J. Pet. Sci. Eng., vol. 180, no. May, pp. 773–778, 2019, doi: 10.1016/j.petrol.2019.06.013.

B. Lin, J. Wang, Q. Huang, M. Ali, and Y. Chi, “Aromatic recovery from distillate oil of oily sludge through catalytic pyrolysis over Zn modified HZSM-5 zeolites,” J. Anal. Appl. Pyrolysis, vol. 128, pp. 291–303, Nov. 2017, doi: 10.1016/j.jaap.2017.09.021.

D. O. Obada et al., “Characterization of zeolites as environmental washcoat materials on cordierite ceramics,” Proceedings of the International Offshore and Polar Engineering Conference, vol. 2016-Janua, no. July, pp. 777–783, 2016.

Z. Zahara, Y. K. Krisnandi, W. Wibowo, D. A. Nurani, D. U. C. Rahayu, and H. Haerudin, “Synthesis and characterization of hierarchical ZSM-5 zeolite using various templates as cracking catalysts,” AIP Conf. Proc., vol. 2023, no. 2018, 2018, doi: 10.1063/1.5064085.

T. Wang, T. Ishida, and R. Gu, “A comparison of the specific surface area of fly ash measured by image analysis with conventional methods,” Constr. Build. Mater., vol. 190, pp. 1163–1172, 2018, doi: 10.1016/j.conbuildmat.2018.09.131.

L. Boudriche, R. Calvet, B. Hamdi, and H. Balard, “Effect of acid treatment on surface properties evolution of attapulgite clay: An application of inverse gas chromatography,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 392, no. 1, pp. 45–54, 2011, doi: 10.1016/j.colsurfa.2011.09.031.

A. Aloise et al., “Desilicated ZSM-5 zeolite: Catalytic performances assessment in methanol to DME dehydration,” Microporous and Mesoporous Mater., vol. 302, no. March, p. 110198, 2020, doi: 10.1016/j.micromeso.2020.110198.

Z. G. L. V. Sari, H. Younesi, and H. Kazemian, “Synthesis of nanosized ZSM-5 zeolite using extracted silica from rice husk without adding any alumina source,” Appl. Nanosci. (Switz.), vol. 5, no. 6, pp. 737–745, 2015, doi: 10.1007/s13204-014-0370-x.

P. Munnik, P. E. de Jongh, and K. P. de Jong, “Recent Developments in the Synthesis of Supported Catalysts,” Chem. Rev., vol. 115, no. 14, pp. 6687–6718, 2015, doi: 10.1021/cr500486u.

K. v. Gurav et al., “Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application,” J. Alloys Compd., vol. 573, pp. 27–31, 2013, doi: 10.1016/j.jallcom.2013.03.193.

J. Singh, G. Kaur, and M. Rawat, “A Brief Review on Synthesis and Characterization of Copper Oxide Nanoparticles and its Applications,” J. Bioelectronics and Nanotechnology, vol. 1, no. 1, pp. 1–9, 2016, doi: 10.13188/2475-224x.1000003.

M. Shamsuddin and N. Raja Nordin, “Biosynthesis of copper(II) oxide nanoparticles using Murayya koeniggi aqueous leaf extract and its catalytic activity in 4-nitrophenol reduction,” Mal. J. Fund. Appl. Sci., vol. 15, no. 2, pp. 218–224, 2019, doi: 10.11113/mjfas.v15n2.1390.

M. Abdullah and Khairurrijal, “A Simple Method for Determining Surface Porosity Based on SEM Images Using OriginPro Software,” Indones. J. Phys., vol. 20, no. 2, pp. 37–40, 2009, doi: https://doi.org/10.5614/itb.ijp.2009.20.2.4.

R. Zhao et al., “A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant,” Chem. Commun., vol. 4, no. 7, pp. 904–905, 2004, doi: 10.1039/b315098d.

C. Chen, Q. Zhang, Z. Meng, C. Li, and H. Shan, “Effect of magnesium modification over H-ZSM-5 in methanol to propylene reaction,” Applied Petrochemical Research, vol. 5, no. 4, pp. 277–284, Dec. 2015, doi: 10.1007/s13203-015-0129-7.

S. H. Zhang, Z. X. Gao, S. J. Qing, S. Y. Liu, and Y. Qiao, “Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins,” Chemical Papers, vol. 68, no. 9, pp. 1187–1193, 2014, doi: 10.2478/s11696-014-0536-8.

K. D. Nugrahaningtyas, M. M. Putri, and T. E. Saraswati, “Metal phase and electron density of transition metal/HZSM-5,” in AIP Conf. Proc., Jun. 2020, vol. 2237, pp. 1–9. doi: 10.1063/5.0005561.

Y. Ozaki, Y. Suzuki, T. Hawai, K. Saito, M. Onishi, and K. Ono, “Automated crystal structure analysis based on blackbox optimisation,” Npj Comput. Mater., vol. 6, no. 1, pp. 1–7, Dec. 2020, doi: 10.1038/s41524-020-0330-9.

C. Kalamaras, D. Palomas, R. Bos, A. Horton, M. Crimmin, and K. Hellgardt, “Selective Oxidation of Methane to Methanol over Cu- And Fe-Exchanged Zeolites: The Effect of Si/Al Molar Ratio,” Catal. Lett., vol. 146, no. 2, pp. 483–492, 2016, doi: 10.1007/s10562-015-1664-7.

A. Sultana, M. Sasaki, K. Suzuki, and H. Hamada, “Tuning the NOx conversion of Cu-Fe/ZSM-5 catalyst in NH3-SCR,” Catal. Commun., vol. 41, pp. 21–25, 2013, doi: 10.1016/j.catcom.2013.06.028.

D. He, H. Zhang, and Y. Yan, “Preparation of Cu-ZSM-5 catalysts by chemical vapour deposition for catalytic wet peroxide oxidation of phenol in a fixed bed reactor,” R. Soc. Open Sci., vol. 5, no. 4, Apr. 2018, doi: 10.1098/rsos.172364.

C. Li et al., “Catalytic cracking of Swida wilsoniana oil for hydrocarbon biofuel over Cu-modified ZSM-5 zeolite,” Fuel, vol. 218, pp. 59–66, Apr. 2018, doi: 10.1016/j.fuel.2018.01.026.

M. Magomedova, E. Galanova, I. Davidov, M. Afokin, and A. Maximov, “Dimethyl ether to olefins over modified ZSM-5 based catalysts stabilized by hydrothermal treatment,” Catalysts, vol. 9, no. 5, pp. 1–19, 2019, doi: 10.3390/catal9050485.

A. v Abramova, “Synthesis of ethylene and propylene on a SAPO-34 silica-alumina-phosphate catalyst,” Catal. Ind., vol. 2, no. 1, pp. 29–37, 2010, doi: 10.1134/S2070050410010058.

T. Ma, H. Imai, M. Yamawaki, K. Terasaka, and X. Li, “Selective synthesis of gasoline-ranged hydrocarbons from syngas over hybrid catalyst consisting of metal-loaded ZSM-5 coupled with copper-zinc oxide,” Catalysts, vol. 4, no. 2, pp. 116–128, Apr. 2014, doi: 10.3390/catal4020116.

O. Mihai et al., “The effect of Cu-loading on different reactions involved in NH3-SCR over Cu-BEA catalysts,” J. Catal., vol. 311, pp. 170–181, 2014, doi: 10.1016/j.jcat.2013.11.016.

B. Lv, Z. Shao, L. He, Y. Gou, and S. Sun, “A novel graphite/phenolic resin bipolar plate modified by doping carbon fibers for the application of proton exchange membrane fuel cells,” Prog. Nat. Sci., vol. 30, no. 6, pp. 876–881, 2020, doi: 10.1016/j.pnsc.2020.10.012.

X. Long, Q. Zhang, Z. T. Liu, P. Qi, J. Lu, and Z. W. Liu, “Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether,” App. Catal. B: Env., vol. 134–135, pp. 381–388, May 2013, doi: 10.1016/j.apcatb.2013.01.034.

D. Mao and X. Guo, “Dimethyl Ether Synthesis from Syngas over the Admixed Cu/ZnO/Al2O3 Catalyst and Alkaline Earth Oxide-Modified HZSM-5 Zeolite,” Energy Technol., vol. 2, no. 11, pp. 882–888, 2014, doi: 10.1002/ente.201402071.

Downloads

Published

2022-11-29