Purifying Crude Glycerol from Biodiesel Production for Sustainable Energy Solutions

Authors

DOI:

https://doi.org/10.31479/jtek.v11i1.269

Keywords:

Bioethanol fuel, Genetic engineering, Renewable energy, Sustainability

Abstract

Biodiesel production has been an important part of a global effort to replace fossil fuels with renewable energy sources. However, one of the problems facing biodiesel production is increased production of glycerol as a by-product. Glycerol, or crude glycerol (CG), is generally produced in significant quantities and needs to be managed wisely. This article discusses the potential use of glycerol from biodiesel production as a raw material for bioethanol production. By optimizing fermentation processes, genetic engineering technology, and purification, glycerol can be converted into bioethanol, one of the more environmentally friendly renewable fuels. The success of the conversion of glycerol to bioethanol is also supported by advances in genetic engineering technology that enable the development of more efficient and productive microorganisms. This creates great opportunities to reduce waste, support resource sustainability, and reduce dependence on fossil fuels through the use of glycerol as a bioethanol raw material. Conversion of glycerol to bioethanol is a step towards more sustainable and environmentally friendly renewable energy.

References

P. T. Greiner, R. York, and J. A. McGee, “When are fossil fuels displaced? An exploratory inquiry into the role of nuclear electricity production in the displacement of fossil fuels,” Heliyon, vol. 8, no. 1, p. e08795, Jan. 2022, doi: 10.1016/j.heliyon.2022.e08795.

D. P. Macedo and A. C. Marques, “Is the energy transition ready for declining budgets in RD&D for fossil fuels? Evidence from a panel of European countries,” J Clean Prod, vol. 417, p. 138102, Sep. 2023, doi: 10.1016/j.jclepro.2023.138102.

N. Uusitalo, “Coming off fossil fuels: Visual recollection of fossil fuel dependency,” Vis Stud, vol. 37, no. 3, pp. 184–192, May 2022, doi: 10.1080/1472586X.2022.2090124.

Z. Todd, “Fossil Fuels and Fossil Kin: An Environmental Kin Study of Weaponised Fossil Kin and Alberta’s So‐Called ‘Energy Resources Heritage,’” Antipode, Nov. 2022, doi: 10.1111/anti.12897.

L. Hermwille and L. Sanderink, “Make Fossil Fuels Great Again? The Paris Agreement, Trump, and the US Fossil Fuel Industry,” Glob Environ Polit, vol. 19, no. 4, pp. 45–62, Nov. 2019, doi: 10.1162/glep_a_00526.

S. A. Neves and A. C. Marques, “The substitution of fossil fuels in the US transportation energy mix: Are emissions decoupling from economic growth?,” Research in Transportation Economics, vol. 90, p. 101036, Dec. 2021, doi: 10.1016/j.retrec.2021.101036.

G. Giacosa and T. R. Walker, “A policy perspective on Nova Scotia’s plans to reduce dependency on fossil fuels for electricity generation and improve air quality,” Cleaner Production Letters, vol. 3, p. 100017, Dec. 2022, doi: 10.1016/j.clpl.2022.100017.

G. A. Ryabov, “Cofiring of Coal and Fossil Fuels is a Way to Decarbonization of Heat and Electricity Generation (Review),” Thermal Engineering, vol. 69, no. 6, pp. 405–417, Jun. 2022, doi: 10.1134/S0040601522060052.

A. C. Ozdemir, “Decomposition and decoupling analysis of carbon dioxide emissions in electricity generation by primary fossil fuels in Turkey,” Energy, vol. 273, p. 127264, Jun. 2023, doi: 10.1016/j.energy.2023.127264.

M. K. Anser, I. Hanif, M. Alharthi, and I. S. Chaudhry, “Impact of fossil fuels, renewable energy consumption and industrial growth on carbon emissions in Latin American and Caribbean economies,” Atmósfera, Jul. 2020, doi: 10.20937/ATM.52732.

G. Zimon et al., “The Impact of Fossil Fuels, Renewable Energy, and Nuclear Energy on South Korea’s Environment Based on the STIRPAT Model: ARDL, FMOLS, and CCR Approaches,” Energies (Basel), vol. 16, no. 17, p. 6198, Aug. 2023, doi: 10.3390/en16176198.

G. Akalin, S. Erdogan, and S. A. Sarkodie, “Do dependence on fossil fuels and corruption spur ecological footprint?,” Environ Impact Assess Rev, vol. 90, p. 106641, Sep. 2021, doi: 10.1016/j.eiar.2021.106641.

X. Li, “How can we make an orderly transition away from fossil fuels? A global tour of modern energy,” Energy & Environment, p. 0958305X2311613, Mar. 2023, doi: 10.1177/0958305X231161300.

D. Steel, P. Bartha, and R. Cripps, “Climate Precaution and Producer versus Consumer Dependence on Fossil Fuels,” Ethics Policy Environ, pp. 1–25, Aug. 2023, doi: 10.1080/21550085.2023.2247815.

D. A. Netreba, V. S. Kovaleva, D. V. Smolyanova, M. O. Belyaev, D. A. Shlygin, and M. V. Shershulina, “Problem and The Riphean Deposits Hydrocarbon Potential of The Republic of Bashkortostan,” Geology, Geophysics and Development of Oil and Gas Fields, no. 4, pp. 5–17, 2023, doi: 10.33285/2413-5011-2023-4(376)-5-17.

A. R. Zahedi and S. A. Mirnezami, “Experimental analysis of biomass to biodiesel conversion using a novel renewable combined cycle system,” Renew Energy, vol. 162, pp. 1177–1194, Dec. 2020, doi: 10.1016/j.renene.2020.08.071.

T. Barreiros, A. Young, R. Cavalcante, and E. Queiroz, “Impact of biodiesel production on a soybean biorefinery,” Renew Energy, vol. 159, pp. 1066–1083, Oct. 2020, doi: 10.1016/j.renene.2020.06.064.

A. S. Nejad and A. R. Zahedi, “Optimization of biodiesel production as a clean fuel for thermal power plants using renewable energy source,” Renew Energy, vol. 119, pp. 365–374, Apr. 2018, doi: 10.1016/j.renene.2017.11.087.

K. G. Biswas and L. Das, “Role of Biodiesel in Indian Renewable Energy,” Current Sustainable/Renewable Energy Reports, vol. 3, no. 3–4, pp. 67–71, Dec. 2016, doi: 10.1007/s40518-016-0062-0.

K. R. Szulczyk and R. A. Badeeb, “Nontraditional sources for biodiesel production in Malaysia: The economic evaluation of hemp, jatropha, and kenaf biodiesel,” Renew Energy, vol. 192, pp. 759–768, Jun. 2022, doi: 10.1016/j.renene.2022.04.097.

A. Halimatussadiah, D. Nainggolan, S. Yui, F. R. Moeis, and A. A. Siregar, “Progressive biodiesel policy in Indonesia: Does the Government’s economic proposition hold?,” Renewable and Sustainable Energy Reviews, vol. 150, p. 111431, Oct. 2021, doi: 10.1016/j.rser.2021.111431.

C. Fischer and T. Meyer, “Baptists and Bootleggers in the Biodiesel Trade: Eu-Biodiesel (Indonesia),” SSRN Electronic Journal, 2019, doi: 10.2139/ssrn.3489187.

T. M. Y. Khan, “Direct Transesterification for Biodiesel Production and Testing the Engine for Performance and Emissions Run on Biodiesel-Diesel-Nano Blends,” Nanomaterials, vol. 11, no. 2, p. 417, Feb. 2021, doi: 10.3390/nano11020417.

I. O. Akpan, I. Edeh, and L. Uyigue, “A Review on Biodiesel Production,” Petro Chem Indus Intern, vol. 6, no. 2, pp. 131–141, 2023.

S. Marx, “Glycerol-free biodiesel production through transesterification: a review,” Fuel Processing Technology, vol. 151, pp. 139–147, Oct. 2016, doi: 10.1016/j.fuproc.2016.05.033.

A. R. Velez, J. R. Mufari, and L. J. Rovetto, “Sodium salts solubility in ternary glycerol+water+alcohol mixtures present in purification process of crude glycerol from the biodiesel industry,” Fluid Phase Equilib, vol. 497, pp. 55–63, Oct. 2019, doi: 10.1016/j.fluid.2019.05.023.

Y. Liu, B. Zhong, and A. Lawal, “Recovery and utilization of crude glycerol, a biodiesel byproduct,” RSC Adv, vol. 12, no. 43, pp. 27997–28008, 2022, doi: 10.1039/D2RA05090K.

F. Zhao, Y. Wu, Q. Wang, M. Zheng, and Q. Cui, “Glycerol or crude glycerol as substrates make Pseudomonas aeruginosa achieve anaerobic production of rhamnolipids,” Microb Cell Fact, vol. 20, no. 1, p. 185, Dec. 2021, doi: 10.1186/s12934-021-01676-2.

Q. (Sophia) He, J. McNutt, and J. Yang, “Utilization of the residual glycerol from biodiesel production for renewable energy generation,” Renewable and Sustainable Energy Reviews, vol. 71, pp. 63–76, May 2017, doi: 10.1016/j.rser.2016.12.110.

L. R. Kumar, S. K. Yellapu, R. D. Tyagi, and X. Zhang, “A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production,” Bioresour Technol, vol. 293, p. 122155, Dec. 2019, doi: 10.1016/j.biortech.2019.122155.

C. R. Chilakamarry, A. M. Mimi Sakinah, A. W. Zularism, I. A. Khilji, and S. Kumarasamy, “Glycerol Waste to Bio-Ethanol: Optimization of Fermentation Parameters by the Taguchi Method,” J Chem, vol. 2022, pp. 1–11, Oct. 2022, doi: 10.1155/2022/4892992.

T. Attarbachi, M. D. Kingsley, and V. Spallina, “New trends on crude glycerol purification: A review,” Fuel, vol. 340, p. 127485, May 2023, doi: 10.1016/j.fuel.2023.127485.

V. Naranje, R. Swarnalatha, O. Batra, and S. Salunkhe, “Technological Assessment on Steam Reforming Process of Crude Glycerol to Produce Hydrogen in an Integrated Waste Cooking-Oil-Based Biodiesel Production Scenario,” Processes, vol. 10, no. 12, p. 2670, Dec. 2022, doi: 10.3390/pr10122670.

R. Pothu, N. Mameda, R. Boddula, H. Mitta, V. Perugopu, and N. Al-Qahtani, “Sustainable conversion of biodiesel-waste glycerol to acrolein over Pd-modified mesoporous catalysts,” Mater Sci Energy Technol, vol. 6, pp. 226–236, 2023, doi: 10.1016/j.mset.2022.12.012.

G. Chemiru and G. Gonfa, “Preparation and characterization of glycerol plasticized yam starch-based films reinforced with titanium dioxide nanofiller,” Carbohydrate Polymer Technologies and Applications, vol. 5, p. 100300, Jun. 2023, doi: 10.1016/j.carpta.2023.100300.

J. Pradima, M. R. Kulkarni, and Archna, “Review on enzymatic synthesis of value added products of glycerol, a by-product derived from biodiesel production,” Resource-Efficient Technologies, vol. 3, no. 4, pp. 394–405, Dec. 2017, doi: 10.1016/j.reffit.2017.02.009.

M. Fazil Khan, A. Garg, S. Jain, G. Dwivedi, and T. Nath Verma, “Optimization of low-temperature transesterification of low FFA blend of sunflower oil and algae oil,” Fuel, vol. 279, p. 118459, Nov. 2020, doi: 10.1016/j.fuel.2020.118459.

C. S. Osorio-González, N. Gómez-Falcon, F. Sandoval-Salas, R. Saini, S. K. Brar, and A. A. Ramírez, “Production of Biodiesel from Castor Oil: A Review,” Energies (Basel), vol. 13, no. 10, p. 2467, May 2020, doi: 10.3390/en13102467.

V. Makarevičienė and I. Sendžikaitė, “Biocatalytic transesterification of rapeseed oil by methyl formate,” Žemės ūkio mokslai, vol. 26, no. 1, May 2019, doi: 10.6001/zemesukiomokslai.v26i1.3969.

M. K. Lam, N. A. Jamalluddin, and K. T. Lee, “Production of Biodiesel Using Palm Oil,” in Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, Elsevier, 2019, pp. 539–574. doi: 10.1016/B978-0-12-816856-1.00023-3.

A. Soly Peter et al., “Optimization of biodiesel production by transesterification of palm oil and evaluation of biodiesel quality,” Mater Today Proc, vol. 42, pp. 1002–1007, 2021, doi: 10.1016/j.matpr.2020.11.995.

Nur Aishah Rajali, Salina Mat Radzi, Maryam Mohamed Rehan, and Nur Amalina Mohd Amin, “Optimization of the Biodiesel Production via Transesterification Reaction of Palm Oil using Response Surface Methodology (RSM): A Review,” Malaysian Journal of Science Health & Technology, vol. 8, no. 2, pp. 58–67, Sep. 2022, doi: 10.33102/mjosht.v8i2.292.

S. Boangmanalu and E. Ginting, “Comparison between Transesterification Reaction with Microwave Heating and Conventional Heating for Biodiesel Production from Coconut Oil with Alkaline Catalyst,” Indonesian Journal of Chemical Science and Technology (IJCST), vol. 6, no. 2, p. 106, Jul. 2023, doi: 10.24114/ijcst.v6i2.49364.

S. S. Soleimani, A. Adiguzel, and H. Nadaroglu, “Production of bioethanol by facultative anaerobic bacteria,” Journal of the Institute of Brewing, vol. 123, no. 3, pp. 402–406, Jul. 2017, doi: 10.1002/jib.437.

S. H. Mohd Azhar et al., “Yeasts in sustainable bioethanol production: A review,” Biochemistry and Biophysics Reports, vol. 10. Elsevier B.V., pp. 52–61, Jul. 01, 2017. doi: 10.1016/j.bbrep.2017.03.003.

H. Chen and X. Fu, “Industrial technologies for bioethanol production from lignocellulosic biomass,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 468–478, May 2016, doi: 10.1016/j.rser.2015.12.069.

A. P. Jacobus, J. Gross, J. H. Evans, S. R. Ceccato-Antonini, and A. K. Gombert, “Saccharomyces cerevisiae strains used industrially for bioethanol production,” Essays Biochem, vol. 65, no. 2, Jul. 2021, doi: 10.1042/EBC20200160.

J. Zhang, A. Rentizelas, X. Zhang, and J. Li, “Sustainable production of lignocellulosic bioethanol towards zero waste biorefinery,” Sustainable Energy Technologies and Assessments, vol. 53, p. 102627, Oct. 2022, doi: 10.1016/j.seta.2022.102627.

Y. Xu, “Integrated bioprocess to boost cellulosic bioethanol titers and yields,” 2012.

J. M. Clomburg and R. Gonzalez, “Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals,” Trends Biotechnol, vol. 31, no. 1, pp. 20–28, Jan. 2013, doi: 10.1016/j.tibtech.2012.10.006.

G. Bagnato, A. Iulianelli, A. Sanna, and A. Basile, “Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors,” Membranes (Basel), vol. 7, no. 2, p. 17, Mar. 2017, doi: 10.3390/membranes7020017.

N. Stepanov and E. Efremenko, “Immobilised cells of Pachysolen tannophilus yeast for ethanol production from crude glycerol,” N Biotechnol, vol. 34, pp. 54–58, Jan. 2017, doi: 10.1016/j.nbt.2016.05.002.

O. Cofré, M. Ramírez, J. M. Gómez, and D. Cantero, “Optimization of culture media for ethanol production from glycerol by Escherichia coli,” Biomass Bioenergy, vol. 37, pp. 275–281, Feb. 2012, doi: 10.1016/j.biombioe.2011.12.002.

P. B. Subhedar and P. R. Gogate, “Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficient bioethanol production: A review,” Industrial and Engineering Chemistry Research, vol. 52, no. 34. pp. 11816–11828, Aug. 28, 2013. doi: 10.1021/ie401286z.

M. Raza, A. Inayat, and B. Abu-Jdayil, “Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review,” Sustainability, vol. 13, no. 22, p. 12813, Nov. 2021, doi: 10.3390/su132212813.

A. Malaika, K. Ptaszyńska, and M. Kozłowski, “Conversion of renewable feedstock to bio-carbons dedicated for the production of green fuel additives from glycerol,” Fuel, vol. 288, p. 119609, Mar. 2021, doi: 10.1016/j.fuel.2020.119609.

K. Zhang, Y. Qin, F. He, J. Liu, Y. Zhang, and L. Liu, “Concentration of aqueous glycerol solution by using continuous-effect membrane distillation,” Sep Purif Technol, vol. 144, pp. 186–196, Apr. 2015, doi: 10.1016/j.seppur.2015.02.034.

R. Dhabhai, E. Ahmadifeijani, A. K. Dalai, and M. Reaney, “Purification of crude glycerol using a sequential physico-chemical treatment, membrane filtration, and activated charcoal adsorption,” Sep Purif Technol, vol. 168, pp. 101–106, Aug. 2016, doi: 10.1016/j.seppur.2016.05.030.

W. De Schepper, M. D. Moraru, B. Jacobs, M. Oudshoorn, and J. Helsen, “Electrodialysis of aqueous NaCl-glycerol solutions: A phenomenological comparison of various ion exchange membranes,” Sep Purif Technol, vol. 217, pp. 274–283, Jun. 2019, doi: 10.1016/j.seppur.2019.02.030.

A. Anvari, A. Azimi Yancheshme, and A. Ronen, “Enhanced performance of membrane distillation using radio-frequency induction heated thermally conducting feed spacers,” Sep Purif Technol, vol. 250, p. 117276, Nov. 2020, doi: 10.1016/j.seppur.2020.117276.

U. Lawan Muhammad, “Biofuels as the Starring Substitute to Fossil Fuels,” Petroleum Science and Engineering, vol. 2, no. 1, p. 44, 2018, doi: 10.11648/j.pse.20180201.17.

F. A. Malla, S. A. Bandh, S. A. Wani, A. T. Hoang, and N. A. Sofi, “Biofuels: Potential Alternatives to Fossil Fuels,” in Biofuels in Circular Economy, Singapore: Springer Nature Singapore, 2022, pp. 1–15. doi: 10.1007/978-981-19-5837-3_1.

Kazuhiko Takeuchi, Hideaki Shiroyama, Osamu Saito, and Masahiro Matsuura, Biofuels and Sustainability. Tokyo: Springer Japan, 2018. doi: 10.1007/978-4-431-54895-9.

R. Johansson, S. Meyer, J. Whistance, W. Thompson, and D. Debnath, “Greenhouse gas emission reduction and cost from the United States biofuels mandate,” Renewable and Sustainable Energy Reviews, vol. 119, p. 109513, Mar. 2020, doi: 10.1016/j.rser.2019.109513.

N. Mahbub, E. Gemechu, H. Zhang, and A. Kumar, “The life cycle greenhouse gas emission benefits from alternative uses of biofuel coproducts,” Sustainable Energy Technologies and Assessments, vol. 34, pp. 173–186, Aug. 2019, doi: 10.1016/j.seta.2019.05.001.

H. Xu, L. Ou, Y. Li, T. R. Hawkins, and M. Wang, “Life Cycle Greenhouse Gas Emissions of Biodiesel and Renewable Diesel Production in the United States,” Environ Sci Technol, vol. 56, no. 12, pp. 7512–7521, Jun. 2022, doi: 10.1021/acs.est.2c00289.

Z. Islam Rony et al., “Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals,” Fuel, vol. 338, p. 127220, Apr. 2023, doi: 10.1016/j.fuel.2022.127220.

K. R. Landwehr et al., “Biodiesel feedstock determines exhaust toxicity in 20% biodiesel: 80% mineral diesel blends,” Chemosphere, vol. 310, p. 136873, Jan. 2023, doi: 10.1016/j.chemosphere.2022.136873.

N. Yilmaz, F. M. Vigil, and B. Donaldson, “Fuel effects on PAH formation, toxicity and regulated pollutants: Detailed comparison of biodiesel blends with propanol, butanol and pentanol,” Science of The Total Environment, vol. 849, p. 157839, Nov. 2022, doi: 10.1016/j.scitotenv.2022.157839.

M. E. Borges and L. Díaz, “Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 2839–2849, Jun. 2012, doi: 10.1016/j.rser.2012.01.071.

Y. Zhou, K. Li, and S. Sun, “Simultaneous esterification and transesterification of waste phoenix seed oil with a high free fatty acid content using a free lipase catalyst to prepare biodiesel,” Biomass Bioenergy, vol. 144, p. 105930, Jan. 2021, doi: 10.1016/j.biombioe.2020.105930.

H. Herliati, R. Yunus, U. Rashid, Z. Z. Abidin, and I. S. Ahamad, “Synthesis of 1,3-dichloropropanol from glycerol using muriatic acid as chlorinating agent,” Asian Journal of Chemistry, vol. 26, no. 10, 2014, doi: 10.14233/ajchem.2014.15995.

M. Zhang and H. Wu, “Effect of major impurities in crude glycerol on solubility and properties of glycerol/methanol/bio-oil blends,” Fuel, vol. 159, pp. 118–127, Nov. 2015, doi: 10.1016/j.fuel.2015.06.062.

Q. (Sophia) He, J. McNutt, and J. Yang, “Utilization of the residual glycerol from biodiesel production for renewable energy generation,” Renewable and Sustainable Energy Reviews, vol. 71, pp. 63–76, May 2017, doi: 10.1016/j.rser.2016.12.110.

C. R. Chilakamarry et al., “Bioconversion of Glycerol into Biofuels—Opportunities and Challenges,” Bioenergy Res, vol. 15, no. 1, pp. 46–61, Mar. 2022, doi: 10.1007/s12155-021-10353-6.

Y. Liu, B. Zhong, and A. Lawal, “Recovery and utilization of crude glycerol, a biodiesel byproduct,” RSC Adv, vol. 12, no. 43, pp. 27997–28008, 2022, doi: 10.1039/D2RA05090K.

S. Chozhavendhan, R. Praveen Kumar, S. Elavazhagan, B. Barathiraja, M. Jayakumar, and S. J. Varjani, “Utilization of Crude Glycerol from Biodiesel Industry for the Production of Value-Added Bioproducts,” 2018, pp. 65–82. doi: 10.1007/978-981-10-7431-8_4.

C. Sivasankaran, P. K. Ramanujam, B. Balasubramanian, and J. Mani, “Recent progress on transforming crude glycerol into high value chemicals: a critical review,” Biofuels, vol. 10, no. 3, pp. 309–314, May 2019, doi: 10.1080/17597269.2016.1174018.

Y. Xiao, G. Xiao, and A. Varma, “A Universal Procedure for Crude Glycerol Purification from Different Feedstocks in Biodiesel Production: Experimental and Simulation Study,” Ind Eng Chem Res, vol. 52, no. 39, pp. 14291–14296, Oct. 2013, doi: 10.1021/ie402003u.

C. R. Chilakamarry, A. M. Mimi Sakinah, A. W. Zularisam, A. Pandey, and D.-V. N. Vo, “Technological perspectives for utilisation of waste glycerol for the production of biofuels: A review,” Environ Technol Innov, vol. 24, p. 101902, Nov. 2021, doi: 10.1016/j.eti.2021.101902.

Irvan, B. Trisakti, R. Hasibuan, and M. Joli, “Fermentative utilization of glycerol residue for the production of acetic acid,” IOP Conf Ser Mater Sci Eng, vol. 309, no. 1, p. 012126, Feb. 2018, doi: 10.1088/1757-899X/309/1/012126.

C. G. Chol, R. Dhabhai, A. K. Dalai, and M. Reaney, “Purification of crude glycerol derived from biodiesel production process: Experimental studies and techno-economic analyses,” Fuel Processing Technology, vol. 178, pp. 78–87, Sep. 2018, doi: 10.1016/j.fuproc.2018.05.023.

V. Y. Mena-Cervantes, R. Hernández-Altamirano, and A. Tiscareño-Ferrer, “Development of a green one-step neutralization process for valorization of crude glycerol obtained from biodiesel,” Environmental Science and Pollution Research, vol. 27, no. 23, pp. 28500–28509, Aug. 2020, doi: 10.1007/s11356-019-07287-0.

O. S. Muniru, C. S. Ezeanyanaso, E. U. Akubueze, C. C. Igwe, and G. N. Elemo, “Review of Different Purification Techniques for Crude Glycerol from Biodiesel Production,” Journal of Energy Research and Reviews, pp. 1–6, Dec. 2018, doi: 10.9734/jenrr/2019/v2i129728.

M. Oliveira, A. Ramos, E. Monteiro, and A. Rouboa, “Improvement of the Crude Glycerol Purification Process Derived from Biodiesel Production Waste Sources through Computational Modeling,” Sustainability, vol. 14, no. 3, p. 1747, Feb. 2022, doi: 10.3390/su14031747.

R. Dhabhai, P. Koranian, Q. Huang, D. S. B. Scheibelhoffer, and A. K. Dalai, “Purification of glycerol and its conversion to value-added chemicals: A review,” Sep Sci Technol, vol. 58, no. 7, pp. 1383–1402, May 2023, doi: 10.1080/01496395.2023.2189054.

N. C, Y. K V, M. P. R, S. M, and G. B. R, “Simultaneous refining of biodiesel-derived crude glycerol and synthesis of value-added powdered catalysts for biodiesel production: A green chemistry approach for sustainable biodiesel industries,” J Clean Prod, vol. 363, p. 132448, Aug. 2022, doi: 10.1016/j.jclepro.2022.132448.

A. P. Lopes, P. R. Souza, E. G. Bonafé, J. V. Visentainer, A. F. Martins, and E. A. Canesin, “Purified glycerol is produced from the frying oil transesterification by combining a pre-purification strategy performed with condensed tannin polymer derivative followed by ionic exchange,” Fuel Processing Technology, vol. 187, pp. 73–83, May 2019, doi: 10.1016/j.fuproc.2019.01.014.

H. Habaki, T. Hayashi, P. Sinthupinyo, and R. Egashira, “Purification of glycerol from transesterification using activated carbon prepared from Jatropha Shell for biodiesel production,” J Environ Chem Eng, vol. 7, no. 5, p. 103303, Oct. 2019, doi: 10.1016/j.jece.2019.103303.

J. J. Torres, N. E. Rodriguez, J. T. Arana, N. A. Ochoa, J. Marchese, and C. Pagliero, “Ultrafiltration polymeric membranes for the purification of biodiesel from ethanol,” J Clean Prod, vol. 141, pp. 641–647, Jan. 2017, doi: 10.1016/j.jclepro.2016.09.130.

T. D. Kusworo, W. Widayat, D. P. Utomo, Y. H. S. Pratama, and R. A. V. Arianti, “Performance evaluation of modified nanohybrid membrane polyethersulfone-nano ZnO (PES-nano ZnO) using three combination effect of PVP, irradiation of ultraviolet and thermal for biodiesel purification,” Renew Energy, vol. 148, pp. 935–945, Apr. 2020, doi: 10.1016/j.renene.2019.10.177.

G. Dong et al., “Free glycerol removal from monoglyceride using TiO2-ZrO2 nanofiltration membranes,” Sep Purif Technol, vol. 224, pp. 366–372, Oct. 2019, doi: 10.1016/j.seppur.2019.05.043.

R. Shanmughom and S. K. Raghu, “Purification strategies for crude glycerol: A transesterification derivative,” 2023, p. 020012. doi: 10.1063/5.0155313.

S.-R. Jhang, Y.-C. Lin, K.-S. Chen, S.-L. Lin, and S. Batterman, “Evaluation of fuel consumption, pollutant emissions and well-to-wheel GHGs assessment from a vehicle operation fueled with bioethanol, gasoline and hydrogen,” Energy, vol. 209, p. 118436, Oct. 2020, doi: 10.1016/j.energy.2020.118436.

B. Sayin Kul and M. Ciniviz, “An evaluation based on energy and exergy analyses in SI engine fueled with waste bread bioethanol-gasoline blends,” Fuel, vol. 286, p. 119375, Feb. 2021, doi: 10.1016/j.fuel.2020.119375.

C. Dong, Y. Wang, H. Wang, C. S. K. Lin, H. Y. Hsu, and S. Y. Leu, “New generation urban biorefinery toward complete utilization of waste derived lignocellulosic biomass for biofuels and value-added products,” in Energy Procedia, Elsevier Ltd, 2019, pp. 918–925. doi: 10.1016/j.egypro.2019.01.231.

J. Frankowski, A. Wawro, J. Batog, K. Szambelan, and A. Łacka, “Bioethanol Production Efficiency from Sorghum Waste Biomass,” Energies (Basel), vol. 15, no. 9, May 2022, doi: 10.3390/en15093132.

H. Herliati, S. Sefaniyah, and A. Indri, “Pemanfaatan limbah kulit pisang sebagai Bahan Baku pembuatan Bioetanol,” J Teknol, vol. 6, no. 1, Feb. 2019, doi: 10.31479/jtek.v6i1.1.

H. Rahman, A. Nehemia, and H. P. Astuti, “Investigating the potential of avocado seeds for bioethanol production: A study on boiled water delignification pretreatment,” International Journal of Renewable Energy Development, vol. 12, no. 4, pp. 648–654, Jul. 2023, doi: 10.14710/ijred.2023.52532.

M. Ghazanfar et al., “Bioethanol Production Optimization from KOH-Pretreated Bombax ceiba Using Saccharomyces cerevisiae through Response Surface Methodology,” Fermentation, vol. 8, no. 4, p. 148, Mar. 2022, doi: 10.3390/fermentation8040148.

V. Acevedo-García, C. Padilla-Rascón, M. J. Díaz, M. Moya, and E. Castro, “Fermentable sugars production from acid-catalysed steam exploded barley straw,” Chem Eng Trans, vol. 70, pp. 1939–1944, 2018, doi: 10.3303/CET1870324.

J. Ruiz, Z. Arbib, P. D. Álvarez-Díaz, C. Garrido-Pérez, J. Barragán, and J. A. Perales, “Photobiotreatment model (PhBT): a kinetic model for microalgae biomass growth and nutrient removal in wastewater,” Environ Technol, vol. 34, no. 8, Apr. 2013, doi: 10.1080/09593330.2012.724451.

I. K. M. Yu et al., “Tuneable functionalities in layered double hydroxide catalysts for thermochemical conversion of biomass-derived glucose to fructose,” Chemical Engineering Journal, vol. 383, p. 122914, Mar. 2020, doi: 10.1016/j.cej.2019.122914.

P. Godoy, Á. Mourenza, S. Hernández-Romero, J. González-López, and M. Manzanera, “Microbial Production of Ethanol From Sludge Derived From an Urban Wastewater Treatment Plant,” Front Microbiol, vol. 9, Nov. 2018, doi: 10.3389/fmicb.2018.02634.

S. A. Haji Esmaeili, J. Szmerekovsky, A. Sobhani, A. Dybing, and T. O. Peterson, “Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers,” Energy Policy, vol. 138, p. 111222, Mar. 2020, doi: 10.1016/j.enpol.2019.111222.

S. A. Haji Esmaeili, A. Sobhani, J. Szmerekovsky, A. Dybing, and G. Pourhashem, “First-generation vs. second-generation: A market incentives analysis for bioethanol supply chains with carbon policies,” Appl Energy, vol. 277, p. 115606, Nov. 2020, doi: 10.1016/j.apenergy.2020.115606.

I. S. Tan, M. K. Lam, H. C. Y. Foo, S. Lim, and K. T. Lee, “Advances of macroalgae biomass for the third generation of bioethanol production,” Chin J Chem Eng, vol. 28, no. 2, pp. 502–517, Feb. 2020, doi: 10.1016/j.cjche.2019.05.012.

K. Robak and M. Balcerek, “Review of Second-Generation Bioethanol Production from Residual Biomass,” Food Technol Biotechnol, vol. 56, no. 2, 2018, doi: 10.17113/ftb.56.02.18.5428.

J. A. Ferreira, P. Brancoli, S. Agnihotri, K. Bolton, and M. J. Taherzadeh, “A review of integration strategies of lignocelluloses and other wastes in 1st generation bioethanol processes,” Process Biochemistry, vol. 75, pp. 173–186, Dec. 2018, doi: 10.1016/j.procbio.2018.09.006.

B. Kumar, N. Bhardwaj, K. Agrawal, and P. Verma, “Bioethanol Production: Generation-Based Comparative Status Measurements,” 2020, pp. 155–201. doi: 10.1007/978-981-13-8637-4_7.

M. A. de Almeida and R. Colombo, “Production Chain of First-Generation Sugarcane Bioethanol: Characterization and Value-Added Application of Wastes,” Bioenergy Res, vol. 16, no. 2, pp. 924–939, Jun. 2023, doi: 10.1007/s12155-021-10301-4.

A. F. Murawski de Mello, L. Porto de Souza Vandenberghe, K. K. Valladares-Diestra, G. Amaro Bittencourt, W. J. Martinez Burgos, and C. R. Soccol, “Corn First-Generation Bioethanol Unities with Energy and Dried Grains with Solubles (DDGS) Production,” 2022, pp. 109–132. doi: 10.1007/978-3-031-01241-9_6.

S. Periyasamy et al., “Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol – A review,” Chemical Engineering Journal, vol. 453, p. 139783, Feb. 2023, doi: 10.1016/j.cej.2022.139783.

M. Fantini, “Biomass Availability, Potential and Characteristics,” 2017, pp. 21–54. doi: 10.1007/978-3-319-48288-0_2.

G. Kildegaard, M. del P. Balbi, G. Salierno, M. Cassanello, C. De Blasio, and M. Galvagno, “A Cleaner Delignification of Urban Leaf Waste Biomass for Bioethanol Production, Optimised by Experimental Design,” Processes, vol. 10, no. 5, p. 943, May 2022, doi: 10.3390/pr10050943.

Downloads

Published

2023-11-30