Survei Volume Lalulintas Dengan Internet Of Thing Yolo-V5
DOI:
https://doi.org/10.31479/jtek.v11i1.276Abstract
Abstrak Internet Of Thing adalah pemanfaatan internet sangat menyebar luas di berbagai bidang kesehatan, pengaturan lalulintas, keselamatan berkendaran, energi dan industri.. Penulisan artikel ini bertujuan untuk memanfaatkan kemajuan teknologi informasi untuk menghitung volume kendaraan di jalan raya yang biasanya dilakukan secara manual dengan menempatkan orang sebagai pencatat jumlah lalulintas yang ada. Metode yang digunakan dalam penelitian ini dengan cara merekam video pergerakan lalulintas dengan kamera handphone yang disimpan dalam frame berformat mp4. Penghitungan dilakukan di kantor dengan menggunakan bantuan program yang dibuat menggunakan fasilitas perangkat lunak python, opencv dan yoloV5. Penghitungan volume lalulintas dilakukan dengan memasang kotak penghitung dan volume lalulintas dicatat dalam format excel. Pengumpulan data dilakukan dengan pengambilan video pada lokasi jalan Transyogi-Cibubur di pos jembatan penyeberangan Mall Ciputra, Cibubur, Jawa Barat. Dengan memanfaatkan video hasil rekaman arus lalu lintas menggunakan dataset gambar yang dihasilkan oleh video hasil rekaman diperoleh untuk empat kategori objek yaitu motor, mobil, bus dan truk. Hasil dari penelitian ini diperoleh kenyataan bahwa dengan metode YOLOv8 dapat mengenali objek dari video rekaman dengan baik. Hasil ketelitian yang diperoleh dengan menggunakan YOLO untuk deteksi volume kendaraan yang mempunyai akurasi pengukuran sepeda motor 91,9 %, mobil penumpang 98,6% , bus 86,7% dan 86,6%.Kata kunci: IoT, lalulintas, yolov5, python, jalan tol, opencvDownloads
References
DAFTAR PUSTAKA
U. Rembold and R. Dillmann, “Artificial Intelligence in Robotics,” IFAC Proc. Vol., vol. 18, no. 16, pp. 1–10, 1985, doi: 10.1016/s1474-6670(17)59927-9.
R. Dillmann and M. Huck, “Intelligent Simulation of Robot Application,” IFAC Proc. Vol., vol. 18, no. 16, pp. 547–555, 1985, doi: 10.1016/s1474-6670(17)60021-1.
M. F. R. Lee and Y. C. Chen, “Artificial Intelligence Based Object Detection and Tracking for a Small Underwater Robot,” Processes, vol. 11, no. 2, 2023, doi: 10.3390/pr11020312.
E. Ismail, B. Ayoub, K. Azeddine, and O. Hassan, “Machine learning in the service of a clean city,” Procedia Comput. Sci., vol. 198, pp. 530–535, 2021, doi: 10.1016/j.procs.2021.12.281.
K. K., S. V., V. D., and B. K., “Deep Learning for Moving Object Detection and Tracking,” 2021, pp. 136–163. doi: 10.4018/978-1-7998-7511-6.ch009.
M. ZAKIA, “Sistem Deteksi Objek Menggunakan Metode You Only Look Once (Yolo) Detection Pada Autonomous Vehicle,” pp. 7–8, 2021.
A. Jafaripournimchahi, Y. Cai, H. Wang, L. Sun, and J. Weng, “Integrated-Hybrid Framework for Connected and Autonomous Vehicles Microscopic Traffic Flow Modelling,” J. Adv. Transp., vol. 2022, 2022, doi: 10.1155/2022/2253697.
A. Jafaripournimchahi, W. Hu, and L. Sun, “An Asymmetric-Anticipation Car-following Model in the Era of Autonomous-Connected and Human-Driving Vehicles,” J. Adv. Transp., vol. 2020, 2020, doi: 10.1155/2020/8865814.
departemen perhubungan, “INTELLIGENT TRANSPORT SYSTEM DIHARAPKAN MENJADI SOLUSI TRANSPORTASI INDONESIA,” https://baketrans.dephub.go.id/berita/intelligent-transport-system-diharapkan-menjadi-solusi-transportasi-indonesia, 2020.
Darmadi, “Studi Kelayakan Underpass Canguk, Kota Magelang, Jawa Tengah,” J. Tek. Sipil-Arsitektur, vol. 20, no. 2, pp. 69–78, 2021, doi: 10.54564/jtsa.v20i2.88.
A. Haq Nalband, S. Basavaraj Channi, S. S. Reddy, S. A. S, P. A. Totad, and A. N. Haq, “AI Powered YOLO based traffic management system through application advancement,” 2021. [Online]. Available: https://www.researchgate.net/publication/352645443
S. Indolia, A. K. Goswami, S. P. Mishra, and P. Asopa, “Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach,” Procedia Comput. Sci., vol. 132, pp. 679–688, 2018, doi: 10.1016/j.procs.2018.05.069.
glenn-jocher, “Ultralytic-yolov5,” 2022. https://github.com/ultralytics/yolov5 (accessed May 27, 2023).
T. Y. Lin et al., “Microsoft COCO: Common objects in context,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8693 LNCS, no. PART 5, pp. 740–755, 2014, doi: 10.1007/978-3-319-10602-1_48.
Mardiana, M. A. Muhammad, and Y. Mulyani, “Library Attendance System using YOLOv5 Faces Recognition,” Proc. - ICCTEIE 2021 2021 Int. Conf. Converging Technol. Electr. Inf. Eng. Converging Technol. Sustain. Soc., pp. 68–72, 2021, doi: 10.1109/ICCTEIE54047.2021.9650628.
G. Wen et al., “YOLOv5s-CA: A Modified YOLOv5s Network with Coordinate Attention for Underwater Target Detection,” Sensors (Basel)., vol. 23, no. 7, pp. 1–14, 2023, doi: 10.3390/s23073367.
Z. N. DUMAN, M. B. ÇULCU, and O. KATAR, “YOLOv5-based Vehicle Objects Detection Using UAV Images,” Turkish J. Forecast., Aug. 2022, doi: 10.34110/forecasting.1145381.
A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” Apr. 2020, [Online]. Available: http://arxiv.org/abs/2004.10934
M. M. R. Abuelgasim Saadeldin*, “Video-Based Vehicle Countingand Analysis using YOLOv5 and DeepSORT with Deployment on Jetson Nano”.
P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A Review of Yolo Algorithm Developments,” Procedia Comput. Sci., vol. 199, pp. 1066–1073, 2021, doi: 10.1016/j.procs.2022.01.135.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91.
M. Y. U. Khalid, “Python Tips,” 2019.
DQLab, “Belajar python online gratis.” https://dqlab.id/ebook-python-gratis-dqlab
C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, 2020, doi: 10.1038/s41586-020-2649-2.
A. Paszke et al., “PyTorch: An imperative style, high-performance deep learning library,” Adv. Neural Inf. Process. Syst., vol. 32, no. NeurIPS, 2019.
X. Gao, F. Ramezanghorbani, O. Isayev, J. S. Smith, and A. E. Roitberg, “TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials,” J. Chem. Inf. Model., vol. 60, no. 7, pp. 3408–3415, 2020, doi: 10.1021/acs.jcim.0c00451.
E. Gazoni, “openpyxl Documentation,” pp. 1–273, 2015.
D. H. Nur and H. Pandu, “Analisis Penanganan Simpang 4 Kranggan, Cibubur, Jawa Barat,” J. Tek. Sipil-Arsitektur, vol. 19, no. 2, pp. 122–127, 2020.
I. Darmadi, “Studi Pemilihan Jalan Lingkar Luar Utara Yogyakarta”.
Darmadi and A. I. Tjahjani, “Analisis Dampak Lalu Lintas On-Off RAMP Jatikarya terhadap Jalan Transyogi, Cibubur,” Tek. Sipil - Arsit., vol. 18, no. 2, pp. 1–11, 2019.
Downloads
Published
Issue
Section
License
The rights of publication and use of intellectual works in this journal are the full property of the publisher, while the moral rights belong to the author.
The formal legal aspects of access and utilization of each Journal of Technology articles are subjected to the Creative Commons Attribution-Share Alike (CC BY-SA) license, which means that journal content can be used freely and fairly (fair use) in a similar form even for commercial purposes.
To avoid malpractice and plagiarism in publication of article publishing, the author is asked to fill out and sign a copyright statement on the Declaration of Authenticity of the Manuscript and Copyright Transfer.