Pembuatan Biokompatibel Komposit dari Nano Hidroksiapatit Berbahan Dasar Cangkang Keong Sawah (Pila ampullacea) dengan Kombinasi Biopolimer PVA (Polyvinyl Alcohol) sebagai Bahan Dasar Pembuatan Suture Anchor

Authors

  • Yasmin Inayah Departemen Teknik Kimia Industri, Fakultas Vokasi, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Agnes Surya Putri Anggraeni Departemen Teknik Kimia Industri, Fakultas Vokasi, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
  • Achmad Dwitama Karisma Departemen Teknik Kimia Industri, Fakultas Vokasi, Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia

DOI:

https://doi.org/10.31479/jtek.v11i1.278

Abstract

AbstrakPerbaikan robekan tendon suprasinatus pada rotator cuff dilakukan dengan menggunakan suture anchor. Baru-baru ini, suture anchor berbahan biodegradable mulai dikembangkan untuk mengatasi permasalahan akibat penggunaan bahan logam. Hidroksiapatit [Ca10(PO4)6(OH)2] atau HAp merupakan biokeramik kalsium fosfat yang memiliki kemiripan dengan mineral tulang. Sintesis HAp dengan metode presipitasi menggunakan prekursor kalsium dan fosfat, seperti kalsium hidroksida [Ca(OH)2] dan asam fosfat [H3PO4]. Kalsium hidroksida dapat diperoleh dari cangkang keong sawah dikarenakan hampir seluruh komposisinya merupakan kalsium karbonat. HAp biasanya dikombinasikan dengan polimer seperti Poly(vinyl Alcohol) (PVA) sebagai komposit untuk mengatasi keterbatasan sifat mekaniknya. Penelitian ini bertujuan untuk mengetahui pengaruh dari kombinasi pencampuran HAp dan PVA terhadap komposit yang dihasilkan sebagai bahan dasar pembuatan suture anchor. Variabel yang digunakan dalam penelitian ini yaitu rasio pencampuran PVA:HAP dengan rasio pencampuran, yaitu 5:5, 6:4, 7:3, 8:2, dan 9:1. Hasil karakterisasi sintesis Hap menunjukkan cangkang keong sawah dapat digunakan sebagai bahan baku sintesis HAp. Hasil uji mekanik menunjukan semakin meningkatnya konsentrasi PVA maka sifat mekanik komposit semakin tinggi. Hasil yang paling optimal pada variabel 9:1 dengan Tensile Strength 10,06 N/mm2, Max Force 107,6 N, dan Elongation 128,08%. Kata kunci: Composite, Hydroxyapatite, Poly Vinyl Alcohol, Rice Snail Shell, Suture Ancho

Downloads

Download data is not yet available.

References

DAFTAR PUSTAKA

C. H. Cho, K. C. Bae, and D. H. Kim, “Biomaterials used for suture anchors in orthopedic surgery,” CiOS Clin. Orthop. Surg., vol. 13, no. 3, pp. 287–292, 2021, doi: 10.4055/cios20317.

Y. A. Sanjaya, F. L. Sari, and A. Taufiqurrohman, “TENDINITIS SUPRASPINATUS PADA IBU USIA 59 TAHUN : SEBUAH LAPORAN KASUS,” Ilm. Maksitek, vol. 7, no. 3, 2022.

L. E. Visscher, C. Jeffery, T. Gilmour, L. Anderson, and G. Couzens, “The history of suture anchors in orthopaedic surgery,” Clin. Biomech., vol. 61, no. November 2018, pp. 70–78, 2019, doi: 10.1016/j.clinbiomech.2018.11.008.

S. Chaudhry, K. Dehne, and F. Hussain, “A review of suture anchors,” Orthop. Trauma, vol. 33, no. 4, pp. 263–270, 2019, doi: 10.1016/j.mporth.2016.12.001.

C. Z. Jin, J. H. Roh, and B. H. Min, “Posterior Cruciate Ligament Reconstruction With a Single-Sling Technique Using a Tibialis Anterior Tendon Allograft,” Arthrosc. - J. Arthrosc. Relat. Surg., vol. 23, no. 3, pp. 323.e1-323.e4, 2007, doi: 10.1016/j.arthro.2006.07.029.

X. Y. Cao et al., “Long-term study on the osteogenetic capability and mechanical behavior of a new resorbable biocomposite anchor in a canine model,” J. Orthop. Transl., vol. 21, no. December 2019, pp. 81–90, 2020, doi: 10.1016/j.jot.2019.12.008.

G. Rh. Owen, M. Dard, and H. Larjava, “Hydoxyapatite/beta-tricalcium phosphate biphasic

ceramics as regenerative material for the repair of complex bone defects,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 106, no. 6, pp. 2493–2512, 2018, doi: 10.1002/jbm.b.34049.

R. Sadykov, D. Lytkina, K. Stepanova, and I. Kurzina, “Synthesis of Biocompatible Composite Material Based on Cryogels of Polyvinyl Alcohol and Calcium Phosphates,” Polymers (Basel)., vol. 14, no. 16, 2022, doi: 10.3390/polym14163420.

E. Edrizal and E. Desnita, “Pengaruh Cangkang Keong Sawah (Pila Ampullacea) Terhadap Pembentukan Tulang Baru (Remodeling Tulang),” Heal. Med. J., vol. 2, no. 2, pp. 42–51, 2020, doi: 10.33854/heme.v2i2.559.

M. Sundalian, S. G. Husein, and N. K. D. Putri, “Review: Analysis and benefit of shells content of freshwater and land snails from gastropods class,” Biointerface Res. Appl. Chem., vol. 12, no. 1, pp. 508–517, 2022, doi: 10.33263/BRIAC121.508517.

R. Kumar and S. Mohanty, “Hydroxyapatite: A Versatile Bioceramic for Tissue Engineering Application,” J. Inorg. Organomet. Polym. Mater., vol. 32, no. 12, pp. 4461–4477, 2022, doi: 10.1007/s10904-022-02454-2.

A. R. Noviyanti, Haryono, R. Pandu, and D. R. Eddy, “Cangkang Telur Ayam sebagai Sumber Kalsium dalam Pembuatan Hidroksiapatit untuk Aplikasi Graft Tulang,” Chim. Nat. Acta, vol. 5, no. 3, pp. 124–131, 2017.

A. Thurzo et al., “Fabrication and In Vitro Characterization of Novel Hydroxyapatite Scaffolds 3D Printed Using Polyvinyl Alcohol as a Thermoplastic Binder,” Int. J. Mol. Sci., vol. 23, no. 23, 2022, doi: 10.3390/ijms232314870.

D. Coelho, A. Sampaio, C. J. S. M. Silva, H. P. Felgueiras, M. T. P. Amorim, and A. Zille, “Antibacterial Electrospun Poly(vinyl alcohol)/Enzymatic Synthesized Poly(catechol) Nanofibrous Midlayer Membrane for Ultrafiltration,” ACS Appl. Mater. Interfaces, vol. 9, no. 38, pp. 33107–33118, 2017, doi: 10.1021/acsami.7b09068.

E. Hartati, D. Setiawan, and Y. B. Yuliyati, “Sintesis Dan Karakterisasi Hidroksiapatit (Hap) Untuk Bahan Pengikat Tungstat Dalam Sistem Generator 188w/188re,” J. Sains dan Teknol. Nukl. Terap., vol. 15, no. 2, pp. 55–68, 2014.

Bambang Sunendar P and R. S. Gultom, “SINTESIS DAN KARAKTERISASI SERBUK HIDROKSIAPATIT SKALA SUB-MIKRON MENGGUNAKAN METODE PRESIPITASI,” J. Bionatura, vol. 10, no. 2, pp. 155–167, 2008.

S. A. Manafi, B. Yazdani, M. R. Rahimiopour, S. K. Sadrnezhaad, M. H. Amin, and M. Razavi, “Synthesis of nano-hydroxyapatite under a sonochemical/hydrothermal condition,” Biomed. Mater., vol. 3, no. 2, 2008, doi: 10.1088/1748-6041/3/2/025002.

B. Pourmollaabbassi, S. Karbasi, and B. Hashemibeni, “Evaluate the growth and adhesion of osteoblast cells on nanocomposite scaffold of hydroxyapatite/titania coated with poly hydroxybutyrate,” Adv. Biomed. Res., vol. 5, no. 1, p. 156, 2016, doi: 10.4103/2277-9175.188486.

A. B. Hanura, W. Trilaksani, and P. Suptijah, “KARAKTERISASI NANOHIDROKSIAPATIT TULANG TUNA Thunnus sp SEBAGAI SEDIAAN BIOMATERIAL,” J. Ilmu dan Teknol. Kelaut. Trop., vol. 9, no. 2, pp. 619–629, 2017.

R. N. Sari, D. Fransiska, F. R. Dewi, and E. Sinurat, “Karakteristik Sediaan Hidroksiapatit dari Cangkang Kerang Simping (Amusium pleuronectes) dengan Perlakuan Suhu dan Waktu Sintesis,” J. Pascapanen dan Bioteknol. Kelaut. dan Perikan., vol. 17, no. 1, p. 31, 2022, doi: 10.15578/jpbkp.v17i1.797.

L. Berzina-Cimdina and N. Borodajenko, “Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy,” Infrared Spectrosc. - Mater. Sci. Eng. Technol., 2012, doi: 10.5772/36942.

Hartatiek et al., “Nanostructure, porosity and tensile strength of PVA/Hydroxyapatite composite nanofiber for bone tissue engineering,” Mater. Today Proc., vol. 44, pp. 3203–

, 2020, doi: 10.1016/j.matpr.2020.11.438.

A. Kumar and S. S. Han, “PVA-based hydrogels for tissue engineering: A review,” Int. J. Polym. Mater. Polym. Biomater., vol. 66, no. 4, pp. 159–182, 2017, doi: 10.1080/00914037.2016.1190930.

T. O. C. Rahayu, I. P. Handayani, and H. S. Kuncoro, “Characterization Of Mechanical And Magnetic Properties On Hybrid Magnet BaFe/Ndfeb with Polyvinyl Alcohol And Carboxymethyl Selulose Matrix Tita,” e-proceeding Eng., vol. 5, no. 3, pp. 5686–5693, 2018.

J. S. Jeong, J. S. Moon, S. Y. Jeon, J. H. Park, P. S. Alegaonkar, and J. B. Yoo, “Mechanical properties of electrospun PVA/MWNTs composite nanofibers,” Thin Solid Films, vol. 515, no. 12, pp. 5136–5141, 2007, doi: 10.1016/j.tsf.2006.10.058.

X. Xu, A. J. Uddin, K. Aoki, Y. Gotoh, T. Saito, and M. Yumura, “Fabrication of high strength PVA/SWCNT composite fibers by gel spinning,” Carbon N. Y., vol. 48, no. 7, pp. 1977–1984, 2010, doi: 10.1016/j.carbon.2010.02.004.

Z. Lu, A. Hanif, C. Lu, G. Sun, Y. Cheng, and Z. Li, “Thermal, mechanical, and surface properties of poly(vinyl alcohol) (PVA) polymer modified cementitious composites for sustainable development,” J. Appl. Polym. Sci., vol. 135, no. 15, pp. 1–8, 2018, doi: 10.1002/app.46177.

Y. Ono, J. M. Woodmass, A. A. Nelson, R. S. Boorman, G. M. Thornton, and I. K. Y. Lo, “Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone,” Bone Jt. Res., vol. 5, no. 6, pp. 269–275, 2016, doi: 10.1302/2046-3758.56.2000535.

N. S. Nagra, N. Zargar, R. D. J. Smith, and A. J. Carr, “Mechanical properties of all-suture anchors for rotator cuff repair,” Bone Jt. Res., vol. 6, no. 2, pp. 82–89, 2017, doi: 10.1302/2046-3758.62.BJR-2016-0225.R1.

Downloads

Published

2023-11-30